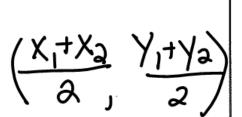
Midsegment Theorem

- **Goals** Identify the midsegments of a triangle.
 - Use properties of midsegments of a triangle.

VOCABULARY

Midsegment of a triangle

the segment that connects the of two sides of a \triangle

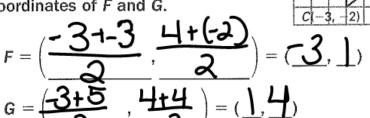


Example 1 Using Midsegments

Show that the midsegment FG is parallel to side CD and is half as long as CD.

Solution

Use the Midpoint Formula to find the coordinates of F and G.



Next, find the slopes of CD and FG.

Remember: The slope m of the line passing through (x_1, y_1) and (x_2, y_2)

Slope of CD Slope of FG Because the slopes are COUCL, FG is parallel to CD.

E(+3, 4)

5 x

Next, find the lengths of \overline{CD} and \overline{FG} .

Use the Distance Formula to find the lengths.

$$CD = \sqrt{[-3]} - (5)^{2} + [-2] - (4)^{2} = \sqrt{[00]} = C$$

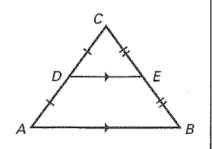
$$FG = \sqrt{[4]} - (1)^{2} + (1 - 3)^{2} = \sqrt{25} = 5$$

$$Because \frac{FG}{CD} = \frac{1}{3}, FG \text{ is half as long as } \overline{CD}.$$

THEOREM 5.9: MIDSEGMENT THEOREM

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long.

$$\overline{DE} \parallel \overline{AB}$$
 and $DE = \frac{1}{2} \underline{AB}$



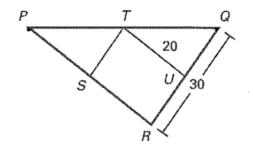
Example 2 Using the Midsegment Theorem

 \overline{ST} and \overline{TU} are midsegments of $\triangle PQR$. Find PR and ST.

Solution

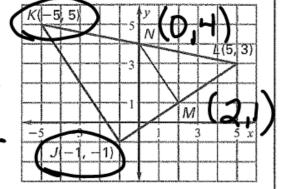
$$PR = 2(\underline{TU}) = 2(\underline{20}) = \underline{40}$$

$$ST = \frac{1}{2}(\cancel{RQ}) = \frac{1}{2}(\cancel{30}) = \cancel{15}$$



1. Show that the midsegment \overline{MN} is parallel to side \overline{JK} and is half as

MN = 3/4 = 3



=(4+9 =(13)

2. \overline{AB} and \overline{BC} are midsegments of $\triangle XYZ$. Find XZ and BC.

